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1.0 PURPOSE AND ORGANIZATION OF THIS REPORT 

The purpose of this report is to review the lessons learned during the development of the 
Authoritative SSL Auditor under contract FA8750-05-C-0295. To illustrate these lessons, it 
extensively references the Final System Design Documentation delivered during the Final 
Development phase of the project. To assist the reader by providing a general context for the 
discussion of lessons learned, this report reproduces the first two sections of that documentation 
as Section 2.0 Background and Section 3.0 System Overview. However, to understand the 
technical details underlying specific lessons, the reader should have access to a complete copy of 
the Final System Design Documentation. 

After Section 2.0 Background and Section 3.0 System Overview, Section 4.0 Development 
Process Overview summarizes how we organized the project tasks. Obviously, the process we 
used significantly affected our learning, so reviewing it is another important part of setting the 
stage. Finally, Section 4.0 Lessons Learned presents several key areas of technical insight. We 
hope that these insights prove valuable to other researchers on future projects.  
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2.0 BACKGROUND 

The Network Resonance Authoritative SSL Auditor (ASA) enables commercial 
enterprises and government agencies to produce evidence on demand for electronic transactions 
with zero drag on operational systems and zero delay in producing proof. Such organizations are 
subject to a bewildering array of regulations and policies. Figuring out the corresponding 
information technology (IT) requirements for compliance presents a challenge. Overlapping 
regulations, evolving interpretations, and revised practices create a poorly visible, constantly 
moving target. However, there is one consistent requirement for a sound defense—evidence. In 
all cases, compliance requires the ability to provide corresponding proof.  

There are two considerations: cost and quality. With all the other potential costs of 
updating systems to comply with policies, organizations want to minimize the necessary 
investment in evidence infrastructure. At the same time, they don't want to sacrifice quality by 
relying on evidentiary measures that won't withstand serious scrutiny. They also don't want to 
compromise other compliance objectives, like confidentiality, or operational objectives, like 
service levels. 

The Authoritative SSL Auditor provides evidence on demand of any interaction over the 
network. It is a completely self-contained and absolutely passive device, yielding very low total 
cost of ownership and very low impact on running applications. It records both unencrypted and 
encrypted network interactions, then signs them with a U.S. government certified hardware 
security module. This process creates extremely strong evidence for unencrypted traffic and 
practically unimpeachable evidence for encrypted traffic. Because the original network 
communications is its source, the ASA reflects what actually happened instead of what a 
particular system thinks happened. 

Reviewing the evidence is simple. A Web interface enables authorized personnel to 
retrieve any recording and replay it. For Web interactions, they view the sequence of pages. For 
voice interactions, they listen to the conversation. For messaging interactions, they read the 
transcript. Because all recordings include low-level networking data as well as the content, they 
can also see exactly what security measures were applied. For encrypted interactions, a highly 
specialized protocol ensures that the system replays only the targeted interaction. There is no 
collateral breach of confidentiality. Private encryption keys never leave the original application. 

The most important benefit of the ASA is complete insulation from changes to 
application software or compliance policies. It replays the network interaction and guarantees the 
integrity of the recording. If an application's behavior or a regulation's interpretation changes, it 
will still replay and guarantee. There's no lag in producing evidence. Whatever an official needs 
to see, the ASA makes it easy to comply. 
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3.0 SYSTEM OVERVIEW 

To minimize barriers to deployment, the most attractive means for generating evidence of 
network communications is a passive network device as shown in Figure 1. A fabric of routers 
and switches already connect client and server machines that generate network traffic. Typically, 
server machines are concentrated in departmental and enterprise data centers, so the switches in 
these data centers present a convenient opportunity to access this traffic. 

Most enterprise-class switches provide a feature called "port mirroring" where the switch 
forwards a copy of the packets from selected ports to a designated mirror port. In cases where 
this features is unavailable or inconvenient, a device called a "network tap" can add the same 
ability as a standalone device. Once a mirror port is configured or a network tap is deployed, 
creating evidence of the traffic flowing to and from a given switch is simply a matter of plugging 
in and configuring one of the ASA's Auditing Sensors. 

 

Figure 1 – Recording Topology 

As the switch processes packets flowing between the client and server, the Auditing 
Sensor receives copies via the mirror port or network tap. The Recording Module captures 
packets flows, identifies coherent communications, and saves them to the Onboard Disk. It also 
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sends these packet sequences to the Signing Module, which then uses a hardware security 
module (HSM) to cryptographically sign these sequences. Because the HSM is a Federal 
Information Processing Standards (FIPS) 140 Level 3 or 4 security processor, its cryptographic 
keys and signature processing are highly resistant to compromise. The combination of the 
original SSL encryption and HSM signature creates practically unimpeachable evidence of the 
original communication. The Sensor provides facilities for moving recordings from the Onboard 
Disk to remote network volumes. 

Recording is the first half of the overall auditing process. Replay is the second. As shown 
in Figure 2, replaying previously recorded traffic requires two additional components. 
Obviously, viewing a recorded communication requires some sort of user interface. The ASA 
provides this interface as an Auditing Portal implemented in Java. 

For small installations, the Auditing Sensor itself can include the Java portal software that 
executes the Auditing Portal, yielding a completely self-contained package that is extremely easy 
to deploy. This approach works well when the number of sensors is relatively low and the 
volume of traffic they record is modest. For larger installations, the preferred means of 
deployment is to deploy a separate, dedicated device running the Auditing Portal on top of the 
necessary Java portal software. 

If desired, adopting organizations can integrate the Auditing Portal with Web interfaces 
for other security or auditing solutions using one of two methods. First, they can use commercial 
portal software that remotely incorporates individual portals within a larger interface, by 
"clipping" them. Second, they can use standard Java tools to package the Auditing Portal as Java 
Specification Request (JSR) 168 portlet and deploy it along with similar portlets as part of a 
single Java portal instance. Because the Portal uses the most widely accepted Java Web portal 
frameworks, this integrations is relatively straightforward. The range of Portal deployment 
options enables the ASA to accommodate installations of varying sizes and requirements.  
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Figure 2 – Replay Topology 

The other component required for replay is the Key Shield. All current approaches to 
examining passively recorded SSL data require that the adopting organization make copies of the 
private keys used by SSL servers and then distribute them to either the recording devices 
themselves or machines running viewing software. Because the privacy of these keys is what 
guarantees that no machine can impersonate a legitimate server, this key distribution degrades 
organizations' confidentiality measures. Moreover, this distribution substantially erodes the 
trustworthiness of the audit trails themselves because it raises the question of whether someone 
falsely generated the trails using copies of private keys. 

The ASA overcomes this challenge by performing all operations that involve a server's 
private keys using the Key Shield, which runs only on that particular server machine. Therefore, 
a server's keys never leave its physical control. 
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With these three major components in place, the ASA can provide complete and 
verifiable evidence of all recorded SSL communications. When an authorized user of the 
Auditing Portal wants to replay a communication, he first authenticates himself to the Java Web 
portal. Then he searches for communications that meet his specified criteria. Upon selecting a 
communication for replay, all the ASA components cooperate to guarantee the integrity of the 
replay process: 

1. The Auditing Portal examines the index of packet flows to determine the 
location of all the packets constituting a given communication. 

2. The Auditing Portal retrieves the identified flows and the corresponding 
signatures. 

3. The Auditing Portal verifies the signatures to ensure that they were made by a 
legitimate Auditing Sensor and that nobody has since tampered with the 
flows. 

4. The Auditing Portal examines the recording to determine which server 
machine participated in the communication, copies the part of the recording 
containing the SSL handshake, and sends it to the Key Shield running on that 
server. 

5. After checking that the Auditing Portal is on its list of authorized Portals, the 
Key Shield retrieves the appropriate private key from its encrypted file and 
uses it to decode the necessary SSL handshakes. It extracts the SSL session 
keys that are specific to that particular communication, encrypts them under 
the Auditing Sensor's public key, and returns them to the Portal. 

6. The Portal then sends the encrypted session keys to the Auditing Sensor for 
decryption, along with the username of the user who requested the replay. 

7. After checking that the Auditing Portal is on its list of authorized Portal, the 
Sensor creates a log entry that identifies the communication being replayed, 
the Portal conducting the replay, and the user who requested the replay. It 
then cryptographically signs this entry and saves it to the audit log. Finally, it 
decrypts the session keys and returns them to the Portal. 

8. The Auditing Portal uses the session keys to decrypt the communication and 
then reconstructs all the application-level messages exchanged during to 
communication. 

9. The Auditing Portal lets the user navigate through the application-level 
messages to replay the communication. 

While this process is complicated, it is completely hidden from the end-user and provides 
a high degree of confidence in the resulting evidence. Replaying a secure communication 
requires the full cooperation of all three major components of the ASA. All replays are logged in 
the HSM's highly secure storage so nobody can secretly access recordings. Each replay only 
discloses the contents of a specifically targeted communication. 
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4.0 DEVELOPMENT PROCESS OVERVIEW  

The project was structured in four phases. The first phase, System Analysis, resulted in 
plans and prototypes. The second phase, Alpha Development, resulted in alpha quality software. 
The third phase, Beta Development, resulted in beta quality software. The fourth, Final 
Development, resulted in production grade software. 

Spiral development served as the underlying model for this structure. We made several 
passes at developing the desired system, refining and enhancing at each step. This approach 
required a substantial amount of organizational agility due to the compounding of standard 
dependencies among subsystems with dependencies among generations of subsystems from 
different passes of the spiral. 

As we got further into the spiral, different subsystems had progressed at different rates, 
causing dependency issues. For example, some subsystems progressed rapidly, but had 
dependencies on other subsystems that progressed slowly. So the rapidly progressing ones would 
lie fallow for a while because they were ahead of schedule and we needed to concentrate on the 
slowly progressing ones. Once all subsystems were at the same level of refinement, the 
dependencies would be broken because the rapidly progressing ones relied on the very early 
interfaces of the slowly progressing ones. Conversely, when slowly progressing subsystems had 
dependencies on rapidly progressing ones, multiple evolutions of the interfaces for rapidly 
progressing subsystems could slow development on the slowly progressing ones even further. In 
addition to enhancing the functionality of the slowly progressing subsystems, we also had to 
constantly update them to use the latest interfaces for the rapidly progressing ones. These 
dependency issues required constant attention. 

Luckily, our team was very small and most of its members had worked together for many 
years. Therefore, the benefits of the spiral approach outweighed the costs. However, we would 
not recommend a spiral process for larger teams or ones where members were unfamiliar with 
each other. 
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5.0 LESSONS LEARNED  

5.1 Real World Network Data 
One of the primary goals of the project was for the resulting implementation of the 

Authoritative SSL Auditor (ASA) to be production ready implementation. Because the ASA 
relies on passively capturing and subsequently reassembling network traffic, one of the primary 
obstacles to production readiness was access to real world network data. While all of the network 
protocols leveraged by the ASA are standards defined by the Internet Engineering Task Force 
(IETF), the reality of modern networks is that they are complicated enough that the standards 
documents themselves do not provide sufficient information about network behavior. 

Building a complete replica of a modern enterprise network would be extremely costly. 
Luckily, there are standard mechanisms for capturing traces of actual network traffic. However, 
most traffic contains sensitive data so enterprises are unwilling to share such traces. As discussed 
in Section 7.1 Functional Testing of the Final System Design Documentation, we addressed this 
issue in two ways. 

First, we did manage to collect traces from three commercial Web sites, in two cases 
based on personal relationships with the site operator and in another based on a commercial 
relationship. Second, we set up an SSL proxy on our own network and captured interactions of 
our own engineers with external Web sites such as Amazon. While much better than no real 
world testing, these samples did not have the breadth we would have preferred in a larger and 
more diverse sample. In particular, researchers at large organizations could probably generate 
substantial test traffic using the SSL proxy approach. 

Luckily, the decoding and reassembly modules of the ASA are nearly identical to those 
used in our commercial Passive Capture Engine (PCE) product. We sell this package to vendors 
of application monitoring software that want to use passive network capture. Through these 
vendors, the PCE is running on between 50 and 100 large commercial networks. For 
confidentiality reasons, we don't generally have large traces from those networks, but we do get 
bug reports and sample TCP connections if the PCE fails to properly reassemble and decode 
their traffic. Therefore, the ASA has undergone an enormous amount of indirect testing on real 
world networks. 

Of course, most other researchers won't have this advantage and direct testing is clearly 
preferable to indirect. The PREDICT project (http://www.predict.org), sponsored by the 
Department of Homeland Security (DHS) Science and Technology (S&T) , is gathering samples 
of real network traffic. When we needed test traffic, PREDICT did not have a library of full 
packet traces. We understand such a library is planned for the future. We strongly endorse its 
creation and recommend that future researchers in this area take advantage of it. 
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5.2 Commercial Test Partner 
In addition to testing with real world traffic, fulfilling the project goals also required the 

ultimate real world test—running on a production network at a commercial enterprise. We felt 
this requirement was so important that we originally obtained the agreement of such a partner 
prior to submitting a research proposal for consideration. Unfortunately, the business 
environment evolved faster than proposal evaluation and contract approval. Shortly after we 
finalized the contract, our commercial partner made a business decision to outsource its network 
operations making it impossible for them to fulfill their promise to help test the system. 

As described in Section 7.31 Field Testing of the Final System Design Documentation, 
we did finally identify a replacement commercial test partner. However, the search required a 
tremendous level of effort and actually delayed project completion. Moreover, because we 
located this replacement partner very late in the project, we did not achieve the expected benefits 
of having the partner provide guidance and feedback throughout the lifecycle. 

Our assessment is that the primary obstacles to finding this partner were (1) ability to 
identify decision makers at candidate organizations, (2) availability of qualified personnel to 
assist in the testing, and (3) concerns over connecting unproven devices to the network. We feel 
strongly that the Department of Homeland Security Science and Technology Directorate could 
sponsor a matchmaking program that would help researchers overcome all three of these 
obstacles. It would be analogous to the PREDICT project discussed above, but for in situ testing 
rather test data. 

Key elements of such a program would include commercial organizations registering 
their interest in specific areas of cybersecurity technology and their availability for assisting with 
testing. The program operator would serve as a trusted third party, ensuring that research projects 
had achieve a suitable level of functionality and stability, then connecting them to the 
commercial organizations that have registered interest in the relevant technology area and are 
available in the necessary timeframe. 

Commercial organizations would benefit because they would achieve visibility into the 
cybersecurity technology pipeline and guide each technology's evolution to optimize its 
applicability to their businesses. Obviously, researchers would benefit because they would 
receive feedback earlier in the process and hopefully more of it. Funding agencies would also 
benefit by having much better data on the commercial potential of the technologies they fund. 
With proper metrics in place, the entire process would be amenable to continuous refinement and 
optimization. 
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5.3 Java Web Stack Productivity 
As described in Section 4.0 Component Detail: Auditing Portal of the Final System 

Design Documentation, the ASA's Auditing Portal relies on the standard Java Web stack to 
provide the infrastructure for processing Web requests and generating Web pages. The popular 
characterization of this stack is that it provides a highly productive and agile platform for Web 
development. This was not our experience. 

The first problem we encountered was one of expertise. We were under the impression 
that the programming skills necessary to use the standard Web Java stack were a readily 
available commodity. However, we had great difficulty hiring people with these skills and the 
ones we did hire weren't very capable. We initially hired a Java specialist that was unable to 
produce any significant functionality. We then hired a different Java specialist that was able to 
produce such functionality, but only very slowly. Finally, we hired a third programmer who was 
skilled in Java, though not a specialist. He was able to work productively, in our opinion, 
because his broader range of skills enabled him to better understand the role of the Auditing 
Portal within the context of the entire ASA. 

As described in Section 4.0 Component Detail: Auditing Portal, the standard Java Web 
uses a suite of components to supposedly simplify development and make applications easier to 
change. The Java Servlet API provides an execution container for the Web-related components. 
The Apache Struts Framework simplifies the process of building Web pages that interact with 
server-side code by providing a declarative dispatch language for invoking different types of 
Java functionality. The Tiles Framework plugs into the Struts framework and provides a high 
level grammar for describing Web form interaction. 

Our experience was that it took a tremendous amount of time to get an initial version of 
the Auditing Portal up and running. So the initial pass at the spiral development approach took 
much longer for the Auditing Portal than any other subsystem, with the knock-on dependency 
effects described previously. Our opinion is that all of the indirection inherent in the Servlet-
Struts-Tiles stack makes it very difficult to transform a conceptualization of the system into the 
appropriate declarative instructions. However, once we reached critical mass, refinements 
proceeded incredibly rapidly. Subsequent passes at the spiral actually went faster for the 
Auditing Portal than the other subsystems, allowing us to make up most of the ground we had 
lost. 

If we had to go back and make the choice again, we would still choose Java over 
alternatives like PHP. In fact, we were able to do a proof-of-concept port of the Management UI 
written in PHP in a few days using our Tiles template. However, we would schedule and manage 
the project differently to account for long ramp up and rapid enhancement times for the standard 
Java Web stack. 
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5.4 Working with HSMs 
As described in Section 3.6 Signer of the Final System Design Documentation, we use an 

nCipher nShield 150 hardware security module (HSM) to provide authenticity guarantees and a 
replay audit trail. Implementing this functionality required writing a custom program that 
executed on the HSM's processor. In a prototype version of the ASA built under a DARPA 
contract, we used the IBM 4758 HSM. Therefore, we have two data points for working with 
HSMs. 

In both cases, we discovered that writing custom programs was quite difficult, though 
more so for the nCipher than for the 4758. Unfortunately, the 4758 become commercially 
unavailable for this project. The problem seems to be that the ability for customers to write 
custom programs is not the primary purpose of the products. Their primary purpose is to execute 
applications provided by their respective manufacturers. The internal application developers, of 
course, have access to the developers that designed the HSM and don't have to rely solely on the 
published code samples and documentation. 

For the nCipher, we found these code samples and documentation to be both a bit sparse 
and a bit out-of-date. The fact that support personnel seemed unfamiliar with the custom 
application development process compounded the mediocre quality of the code samples and 
documentation. Every interaction required assistance from a product engineer, brokered through 
the support representative. So roundtrips could consume several days. Even worse, limited time 
prevented product engineers from providing complete answers so resolving an issue typically 
required many roundtrips. 

One of the nCipher's unique features is the sophistication of its permission scheme for 
controlling access to resources available through the card. Section 3.6 Signer describes the 
scheme we used, which, while complicated, was essentially the simplest possible. While this 
permission scheme has attractive properties from a security perspective, the documentation 
provided no guidance in how to put the low level permissions features together into a coherent 
scheme. We required several consultations with nCipher product engineers and access to internal 
code that we could use as a model. 

Because the HSM is a central feature of the ASA, these difficulties could have proved 
catastrophic for the project. Luckily, we knew from our experience with the 4758 used on the 
DARPA project that writing a simulator for the HSM would prove a sound time investment. This 
simulator consisted of an abstract API and a software only implementation of the API functions. 
Using the nShield card itself required simply writing a bridge from the abstract API to the car'd 
native API. 

Therefore, while we were waiting for nCipher's assistance, we were still able to proceed 
with development on the other subsystems. They simply used the simulator. In the case of the 
Auditing Portal, this model proved invaluable because it depended on the HSM. The trouble 
getting basic functionality implemented for both subsystems would have been disastrous if it 
weren't for the isolation provided by the simulator. 
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5.5 Dynamic Decoder Chains 
As described in Section 2.0 System Overview of the Final System Design Documentation, 

we designed the sections of the recording and replay system that reconstructed protocol 
messages as a stack of dynamic decoder chains. This approach stemmed from our early 
experience on the DARPA project and building the PCE. The DARPA software used a mostly 
monolithic decoding stack. The PCE software used a modular, but static decoding stack. 

For this project, we completed the evolution to modular, dynamic decoding chains. The 
Recorder and Player Core can assemble these chains from dynamically loadable shared objects 
based on the directives contained in the Registry. Obviously, this approach will make it much 
easier to extend the ASA to support auditing of applications other than the Web. 

It also has to less obvious benefits. First, extending the system in small ways will be 
much easier too. If we need to process the data stream and add metadata that will assist in later 
retrieval, we can implement this functionality as a new decoder, greatly simplifying the 
development and testing process. 

Second, testing the system was much easier because we were able to create a decoder 
chain specifically for automated testing as discussed in Section 7.1 Functional Testing of the 
Final System Design Documentation. So instead of having to test replay functionality in a two 
step process of recording and replay, we were able to create a combined recording and replay 
stack. This stack tested the end-to-end ability of the system to accurately reconstruct the original 
messages in a single, automated pass. 
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5.6 Database Performance 
As described in 3.4 Indexer and Session Index of the Final System Design 

Documentation, we tried using both Berkeley DB and PostgreSQL to manage the Session Index. 
We actually evaluated even more solutions, including other open source relational databases and 
object databases. Figuring out how to manage the Session Index turned out to be much more 
time consuming than we originally envisioned and at times we thought it might not be feasible to 
simultaneously achieve the write and read performance we desired. 

The fundamental problem is that all common database managers are optimized to provide 
fast reads for concurrent users, with a certain number of writes. In contrast, the usage pattern for 
the ASA is to constantly write an enormous amount of data but to only occasionally read select, 
small parts of it. Being able to search through the large volumes of data to find select parts 
requires indexing. 

Unfortunately, most database indexing schemes make updating them very expensive. The 
usage model they assume is that writes are infrequent enough that they need to update the index 
for each individual write and they need to update the entire index. The ASA can potentially write 
thousands of records per second and the typical indexing scheme can quickly become the 
dominant performance cost. 

The two-pronged strategy of using copy operations instead of insert operations and 
partitioning the index as described in 3.4 Indexer and Session Index overcame this issue with 
PostgreSQL. The partitioning feature is new in version 8.1 and many researchers may not be 
aware of it. Moreover, it wasn't obvious how to leverage this feature to sole the indexing cost 
problem and required a fair amount of experimentation. Hopefully, our experience can help other 
researchers avoid this effort. 
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5.7 Disk I/O Performance 
While the PostgreSQL optimizations discussed in the previous section enabled us to 

achieve the project's performance targets, we did not have as much headroom as we would have 
liked. The bottleneck appears to be disk I/O performance. We suspect a fundamental limitation 
of common SATA controllers. 

Prior to specifying the device hardware for this project, we did extensive research on disk 
performance. We knew that we would be streaming data to disk at a rapid rate and wanted to be 
sure the I/O subsystem could handle it. All the testing and benchmarks we reviewed suggested 
that a SATA RAID system would be sufficient. 

We originally configured the disks on the device in a RAID 0 array, where the controller 
card stripes data across multiple disks. This approach theoretically speeds both reads and writes. 
Each logical operation is divided into multiple parallel operations across the available disks. 

However, we experienced dramatic decreases in throughput when we tried to read and 
write simultaneously to the same RAID volume. We suspect this behavior may be an artifact of 
the RAID controller chips, but we aren't sure. In any case, we had to turn RAID off and 
configure file locations to minimize simultaneous reads and writes to the same disk. 

Even then, it was clear that we would not be able to exceed our performance targets by 
much due to the I/O bottleneck. Because we did meet these targets, we did not to any further 
experimentation. The first thing we would try is the SCSI interface rather than the SATA 
interface. The next thing we would try is using 15,000rpm disks rather than 10,000rpm disk. 
While 15,000rpm SCSI disks are substantially more expensive than 10,000rpm SATA disks, we 
recommend that researchers working on systems with simultaneous read/write access to the same 
disks under demanding performance requirements make the investment because it will likely 
make up the difference by decreasing the necessary amount of performance tuning 
experimentation. 




